EMERSON

XW737K – D60K

7020350 AND 7020333

	Manual for rel. 1.2	
1	GENERAL WARNING	. 1
2	TECHNICAL FEATURES	. 1
3	GENERAL DESCRIPTION	. 1
4	USER INTERFACE	. 1
5	HOW TO SEE AND MODIFY THE SETPOINT	. 1
6	FAST ACCESS MENU	. 2
7	SERVICE MENU / PROGRAMMING MODE	. 2
8	USE THE HOT KEY	. 2
9	CLOCK SETTING AND RTC ALARM RESET	. 2
10	HOW TO PROGRAM THE PARAMETERS (PR1 AND PR2)	. 2
11	PASSWORD MENU	. 2
12	SELF TEST MENU	. 2
13	HOW TO ENABLE AND DISABLE THE LOG	. 3
14	HOW TO EXPORT DATA AND ALARMS TO USB	. 3
15	ALARMS	. 3
16	CONTROLLING LOADS	. 3
17	SPECIAL FUNCTIONS	. 3
18	PARAMETER LIST	. 3
19	DIGITAL INPUT	. 4
20	INSTALLATION AND MOUNTING	. 4
21	ELECTRICAL CONNECTIONS	. 4
22	TTL/RS485 SERIAL LINE	. 5
23	ALARM SIGNALS	. 5
24	CONNECTIONS	. 5
25	DEFAULT VALUES	. 5

1 GENERAL WARNING

1.1 PLEASE READ BEFORE USING THIS MANUAL

- This manual is part of the product and should be kept near the instrument for easy and quick reference.
- The instrument shall not be used for purposes different from those described hereunder. It cannot be used as a safety device.
- Check the application limits before proceeding.

1.2 Safety Precautions

- Check the supply voltage is correct before connecting the instrument.
- Do not expose to water or moisture: use the controller only within the operating limits avoiding sudden temperature changes with high atmospheric humidity to prevent formation of condensation
- Warning: disconnect all electrical connections before any kind of maintenance.
- Fit the probe where it is not accessible by the End User. The instrument must not be opened.
- In case of failure or faulty operation send the instrument back to the distributor or to "Dixell S.r.l." (See address) with a detailed description of the fault.
- Consider the maximum current which can be applied to each relay (see Technical Data)
- Ensure that the wires for probes, loads and the power supply are separated and far enough from each other, without crossing or intertwining.
- In case of applications in industrial environments, the use of mains filters (our mod. FT1) in parallel with inductive loads could be useful.

2 TECHNICAL FEATURES

Power module XW737K

Case: 8 DN: 140X176X148 Connections:

Disconnectable screw terminal blocks ≤ 2.5mm² for probes and digital inputs and back up battery 6.3mm Faston for loads and power supply Power supply: 230Vac ± 10% 50/60Hz or. 110Vac ± 10% 50/60Hz Power absorption: 10VA max Inputs: 4 NTC or PT1000 probes Digital input: 1 free voltage Relay outputs: <u>Total current on loads MAX. 20A</u> Compressor: relay SPST 20(8) A, 250Vac Fan: relay SPST 8(3) A, 250Vac Light: relay SPST 8(3) A, 250Vac Alarm: relay SPST 8(3) A, 250Vac Serial DATA output/input: USB connector Serial DATA output/input: USB connector Serial output for monitoring: TTL type Communication protocol: Modbus - RTU Data storing: on the non-volatile memory (EEPROM) Kind of action: 1B

Kind of action: 1B Pollution degree: normal Software class: A

Operating temperature: 0 to 60°C (32 to 140°F) Storage temperature: -25 to 60°C (-13 to 140°F) Relative humidity: 20 to 85% (no condensing) Measuring and regulation range: NTC probe: -40 to 50°C (-58 to 122°F) PT1000 probe: -100 to 50°C (-148 to 122°F) Resolution: 0.1°C or 1°C (or 1°F (selectable) Accuracy (ambient temp. 25°C): ±0.5°C ±1 digit

Internal real time clock with rechargeable battery Clock battery backup: 5 months Data memory capacity: 35500 samples Model **XW737K** is microprocessor based controller suitable for applications on medium or low temperature refrigerating units. It has to be connected by means of a 3-wire cable (\varnothing 1mm) at a distance of up to 30 meters to the keyboard **D60K**.

For the connections use shielded cable AWG 18 or less.

It is provided with four relay outputs to control compressor, evaporator fans light and alarm. It is also provided with 4 NTC or PT1000 probe inputs, one for temperature control, one to control the defrost end temperature of the evaporator and the third and fourth to log temperatures or to display another temperature.

The HOT KEY output allows to connect the unit, by means of the external module XJ485-CX, to a network line **ModBUS-RTU** compatible such as the Dixell monitoring units of XWEB family. It allows programming the controller by means the HOT KEY programming keyboard.

The instrument is fully configurable through special parameters that can be easily programmed through the keyboard.

Furthermore it is capable of logging a temperatures detected by the probes and its status. It is provided with USB (*) output to download the data. The data are collected into standard text format (.txt) file and can be easily read with a standard spreadsheet program such as Microsoft Excel ®.

(*) USB key must have these features: FAT formatting; USB 1.1 or 2.0; Max 2GB. DIXELL can provide USB key suitable for this application

USER INTERFACE

LEDS

Each LED function is described in the following table

LED	MODE	FUNCTION	
*	ON	Compressor enabled	
*	Flashing	Anti-short cycle delay enabled	
*	ON	Defrost enabled	
*	Flashing	Drip time in progress	
ŝ,	ON	Fans enabled	
s,	Flashing	Fans delay after defrost in progress.	
	ON	An alarm is occurring	
$(\underline{\bullet})$	ON	Recording activated	
Ħ	ON	Battery status OK	
Ð	Flashing	Charging problem or battery failure	
°C/°F	ON	Measurement unit	
°C/°F	Flashing	Programming phase	

4.1 BUTTONS

SET	SET To display target set point; in programming mode it selects a		
	parameter or confirm an operation.		
\wedge	(UP) To enter fast access menu		
\sim	In programming mode it browses the parameter codes or increases		
	the displayed value.		
\triangleleft	(DOWN); n programming mode it browses the parameter codes or		
	decreases the displayed value.		
	Push it for 3s to start a manual defrost		
DATA	DATA Export data from button		
- ` ¢-	(LiG) To switch the light.		
REC	Log activation and deactivation from button (Password protected)		

6 HOW TO SEE AND MODIFY THE SETPOINT

5.1 HOW TO: SEE THE SET POINT

 Push and immediately release the SET key: the display will show the Set point value.
 Push and immediately release the SET key or wait for 30 sec to display

 Push and immediately release the SET key or wait for 30 sec to display the probe value again.

5.2 HOW TO CHANGE THE SET POINT

- 1. Push the **SET** key more than 2 sec to change the Set point value.
- 2. The value of the set point will be displayed and the "°C" or "°F" LED will start blinking.
- 3. To change the Set value push the UP or DOWN arrows within 10 sec.
- 3. To memorize the new set point value, push the SET key again or wait 30s.

Installing and operating instructions

EMERSON

FAST ACCESS MENU

This menu contains the list of probes and some values that are automatically evacuate by the board such as the superheat and the percentage of valve opening. The values: **nP** or **noP** stands for probe not present, **Err** value out of range, probe damaged not connected or incorrectly configured.

Entering fast access menu	By press and release the UP arrow . The duration of the menu in case of inactivity is about 3 min. The values that will be showed depend on the configuration of the board.
Use or with a select an entry, then press SET to see the value or to go on with other value.	 HM Access to clock menu or reset of the RTC alarm; dP1 (Pb1) Value read by probe 1. dP2 (Pb2) Value read by probe 2. dP3 (Pb3) Value read by probe 3. dp4 (Pb4) Value read by probe 4. dPr Virtual probe for room temperature regulation [rPA and rPb]; MEM To see the used percentage of the memory rSE Real thermoregulation set point: the value includes the sum of SET, HES and/or the dynamic set point if the functions are enabled.
Exit	SET + Pressed together or wait the timeout of about 60 sec

SERVICE MENU / PROGRAMMING MODE

The SERVICE menu collects the main functions of the controller.

- From the SERVICE menu is possible to:
 - Enter the PARAMETER programming MENU (Pr1 / Pr2)
 - Set the password and enable it for some menu
 - Start the self test function
 - Set the real time clock

7.1 HOW TO ENTER THE PROGRAMMING MODE

To change a parameter value, operate as follows:

1. Enter the Programming mode by pressing the **SET+DOWN** buttons for 3s (the °C or °F LED will start blinking).

Labe	Menu	
Pr1	User parameters	
Pr2	PSW protected parameters PSW	
PSu	PSu PSW Menu: it set PSW and which menu has to be protected	
Rtc	Real time menu (RTC)	
SLF	Self-test	

8 Use the HOT KEY

8.1 HOW TO: PROGRAM A HOT KEY FROM THE INSTRUMENT (UPLOAD)

- 1. Program one controller with the front keypad.
- When the controller is <u>ON</u>, insert the "HOT-KEY" and push UP button; the "uPL" message appears followed a by a flashing "End" label.
- 3. Push SET button and the "End" will stop flashing.
- 4. <u>Turn OFF</u> the instrument, remove the "**HOT-KEY**" and then turn it ON again.

NOTE: the "Err" message appears in case of a failed programming operation. In this case push again button if you want to restart the upload again or remove the "HOT-KEY" to abort the operation.

8.2 HOW TO: PROGRAM AN INSTRUMENT USING A HOT KEY (DOWNLOAD)

- Turn OFF the instrument.
 Insert a pre-programmed "HOT-KEY" into the 5-PIN receptacle and then turn the Controller
- ON.
 3. The parameter list of the "HOT-KEY" will be automatically downloaded into the Controller memory. The "doL" message will blink followed a by a flashing "End" label.
- 4. After 10 seconds the instrument will restart working with the new parameters.
- 5. Remove the "**HOT-KEY**".

NOTE: the message "Err" is displayed for failed programming. In this case turn the unit off and then on if you want to restart the download again or remove the "HOT-KEY" to abort the operation.

9 CLOCK SETTING AND RTC ALARM RESET

BEGIN	SET+♥	 Enter the Programming Mode pressing both SET+DOWN keys for 3 sec Use the UP or DOWN button till the "CLO" menu is displayed
Display	CLO identify the clock RTC submenu; press	

Display	HUr = hour → prr Min = minutes → dAy = Day of 1 Udy = Day of Mon = Month yEA = Year →	ess SET to confirm/modify press SET to confirm/modify the month → press SET to confirm/modify the week (Sun,Mon,tuE,Ued,thE,Fri,SAt) → press SET to confirm/modify press SET to confirm/modify
EXIT	SET + A	Press for about 10 sec. The operation resets the RTC alarm.

Note: the "CLo" clock menu is available by enter Programming mode. Warning: if the board shows the rtF alarm, the device has to be changed

10 HOW TO PROGRAM THE PARAMETERS (PR1 AND PR2)

The device provide 2 programming levels: **Pr1** with direct access and **Pr2** protected with a password (intended for experts).

ACCESS to Pr1	SET <mark>+</mark> 🏷	Press and hold for about 3 sec to have access to the first programming level (Pr1).
Select item	l⇔ or ♥	Select the parameter or submenu using the arrows.
Show value	SET	Press SET button.
Modify	l⇔ or ♥	Use the arrows to modify the value.
Confirm and store	SET	Press SET key: the value will blink for 3 sec, and then the display will show the next parameter.
EXIT	SET <mark>+</mark> A	Instantaneous exit from the programming mode, otherwise wait for about 10 sec (without press any button).

10.1 HOW TO HAVE ACCESS TO "PR2"

To enter Pr2 programming menu:

- Access to a Pr1 menu by pressing both SET+DOWN keys for 3 sec, the first parameter label will be showed;
- 2. Press DOWN key till the Pr2 label will be showed, then press SET;
- 3. The blinking **PAS** label will be showed, wait some seconds;
- Will be showed "0 -" with blinking 0: insert the password using the keys UP and DOWN and confirming with SET key.
- The password is enabled; use the following procedure to insert it.

1 PASSWORD MENU

- In the PASSWORD MENU it's possible:
 - a. to set the PASSWORD and set if the
 - Pr2 Parameter level

SELF TEST function is protected by the password.
 The PASSWORD MENU is accessible without password if the PW = 0, otherwise the password is required.

THE DEFAULT PASSWORD IS 12

11.1 HOW TO ENTER THE PASSWORD MENU PSU

Procedure:

- 1. Enter the Programming Mode pressing both SET+DOWN keys for 3 sec
- 2. Select PSu sub-menu
- 3. Push the Set key
- 4. If the password is different from 0, the password is required to enter it.
- 5. See paragraph 10 HOW TO PROGRAM THE PARAMETERS (PR1 AND PR2)

The Password menu contains the following parameters:

LABEL	RANGE	DESCRIPTION	
PAS	0÷999	Password value	
Pr2	n, y	Password enabled for Pr2 menu	
SLF	n, y	Password enabled for Self Test	
rEC	n,y	Password enabled to activate and de-active the temperature log	

12 SELF TEST MENU

12.1 TO ENTER THE SELF TEST MENU

Procedure:

- 3. Enter the Programming Mode pressing both SET+DOWN keys for 3 sec
- 4. Select SLF sub-menu
- 5. Push the Set key
- 6. If PASSWORD is required, insert it, as for the above description,
- OTHERWISE the SELF TEST menu is entered directly.

12.2 SELF TEST PROCEDURE

Controller will display "SLF" flashing till the SET key is pushed. If the SET key is not pushed in 30s the controller will come back to the standard mode

1 By pushing the SET key the following loads are switched on in sequence while the display will

show the following:	
show the following.	

Step	Display	Load status
1	OFF	All the relays off
2	1Ld	Compressor relay and its icon on
3	2Ld	Fan relay and its icon on

Installing and operating instructions

2 Wait 30s or push the SET key to come back to the previous screen.

13 How to enable and disable the log

To activate/de-activate the LOG

Push the REC key for 3s.

5.

- If the PASSWORD is required, insert the PASSWORD as describe in the previous chapter. The controller will display "Y" se log is enabled, or "n" if disabled 2
- 3. 4
 - Use the arrow key to modify the value:
 - To enable the log: from "n" to "Y а
 - b. To disable the log: from "y" to "n"
 - To confirm the new value and exit push the SET key.

To exit: Wait 30s or push the SET+UP keys to come back to the main display.

14 How to export data and alarms to USB

- To export the data into the USB key follow this:
- Insert an suitable USB(*) stick 1.
- (*) USB key must have these features:
 - FAT formatting
 - USB 1.1 or 2.0
 - Max 2GB

DIXELL can provide USB KEY suitable for this application. Part number 7750001040 Push the DATA key.

- 2 3. Controller starts uploading data to USB
- While exporting the display shows "Lod" message followed by the "ALr" message.
- 5. At the end the following message will be displayed:
- "End" if everything it's ok
 - "Err" if exporting has not taken place. ii.

ALARMS 15

The controller memorizes the last 100 alarms happened, together with their start and finish time. It's possible to export the alarms as described in the previous chapter.

15.1 ACTIVE ALARMS

Controller, will show active alarm alternated with the normal visualization

16 CONTROLLING LOADS

16.1 THE COMPRESSOR

The regulation is performed according to the temperature measured by the thermostat probe with a positive differential from the set point: if the temperature increases and reaches set point plus differential the compressor is started and then turned off when the temperature reaches the set point value again. In case of fault in the thermostat probe the start and stop of the compressor are timed through parameters Con and CoF.

16.2 DEFROST

Defrost is performed through a simple stop of the compressor.

Parameter "IdF" controls the interval between defrost cycles, while its length depends on the temperature detected by the evaporator probe P2, when it reaches the dtE value, the defrost is stopped. In any case the defrost is stopped after the "MdF" time

If the evaporator probe is not present (P2P = n), the defrost length is defined by the parameter MdF.

16.3 CONTROL OF EVAPORATOR FANS

The fan control mode is selected by means of the **FnC** parameter:

- FnC = C_n: fans will switch ON and OFF with the compressor and not run during defrost;
- fans will run even if the compressor is off, and not run during defrost; FnC = o n
- After defrost, there is a timed fan delay allowing for drip time, set by means of the Fnd parameter.
- FnC = C_Y fans will switch ON and OFF with the compressor and run during defrost;
- FnC = o_Y fans will run continuously also during defrost.

An additional parameter FSt provides the setting of temperature, detected by the evaporator probe, above which the fans are always OFF. This is used to make sure circulation of air only if his temperature is lower than set in FSt

TIMED ACTIVATION OF THE FANS WHEN THE COMPRESSOR IS OFF. 16.3.1

When FnC=C-n or C-Y (fans in parallel to the compressor), the fans will be able to carry out on and off cycles even if the compressor is switched off. The on and off interval of time follow the Fon and FoF parameters. When the compressor is stopped the fans will go on working for the Fon time. On the other side, with Fon=0 the fans will stay always off when the compressor is off.

16.4 LIGHT

The light status depends on the status of the door switch

17 SPECIAL FUNCTIONS

DEVICE OPERATIONS IN CASE OF POWER FAILURE, IF A BACK UP BATTERY IS CONNECTED

17.1.1 POWER FAILURE WITHOUT TEMPERATURE ALARM

If the controller is connected to the battery, during a power failure

- 1. The alarm LED icon will be lit.
- 2. The alarm relay will be activated according to the Aro parameter. 3. Every 5s the buzzer will ring 3 times during 1s.

1598026045 XW737K-D60K VST GB R1.2 08.11.2019.docx

The buzzer will be muted after pressing any button. It will restart ringing after the bon time if the power failure keeps on lasting. After pushing SET button, the controller will display the temperature for 5s.

POWER FAILURE AND TEMPERATURE ALARMS 17.1.2

- If a temperature alarm happens during a power failure
- 6 The alarm LED icon will be lit. 7 The buzzer will ring continuously.
- The displays will shows: real temperature for 1s, alarm label for 1s and remains off for 5s. 8.

The buzzer will be muted for the bon time after pressing any button.

18 PARAMETER LIST

CLOCK AND RECORDING SETTING

- Hur Hour (1÷24h)
- Min Minutes (0÷60min)
- Udy Current day of the week (1÷7)
- dAy Day (1÷31) Mon Month (1+12)
- уEA Year (0÷99)
- itP Recording interval (1+255min)
- First probe recording enable rC1
- = recording enabled; n = recording disabled rC2
- Second probe recording enable y = recording enabled; n = recording disabled
- rC3 Third probe recording enable
- = recording enabled; n = recording disabled Fourth probe recording enable rC4
- y = recording enabled; n = recording disabled rCb Start recording LOG key enabling
- y = by the LOG key is possible to start/stop recording. n = recording is always enabled
- FU Date format EU = European: dd/mm/yyyy US = USA: mm/dd/yyyy
- rSd Data erase (no÷yes:)
- To erase the logged data, set rSd = YES and then switch the controller off and on. To cancel the data a power down and up it's necessary rSA
- Alarms erase (no÷y) To erase the logged alarm, set rSA = YES and then switch the controller off and on. To cancel the alarm a power down and up it's necessary.

REGULATION

- SET Set point temperature: (LS+US) it's the temperature the cabinets has to maintain.
- Differential: (0.1 to 25.5°C; 1 to 45°F) differential for set point, always positive. Compressor Cut Ηv IN is Set Point plus Differential (HY). Compressor Cut OUT is when the temperature reaches the set point.
- I S Minimum set point limit: (-55.0°C to SET; -67°F to SET) Sets the minimum acceptable value for the set point
- US Maximum set point limit: (SET to 150°C; SET to 302°F) Set the maximum acceptable value for set point.

PROBE INPUTS

DISPLAY

CF

rFS

rEd

IdF

XW737K

DEFROST

- Regulation probe calibration (term. 1-2): (-12.0 to 12.0°C; -21 to 21°F) allows to adjust possible ot offset of the thermostat probe
- Evaporator probe presence (term. 2-3): n = not present: the defrost stops only by time; P2P = present: the defrost stops by temperature and time.
- Evaporator probe calibration: (-12.0 to 12.0°C; -21 to 21°F) allows to adjust possible offsets of οE the evaporator probe
- P3P
- Third probe presence (term. 4-5): n= not present; y= present. Third probe calibration: (-12.0 to 12.0°C; -21 to 21°F) allows to adjust possible offsets of the о3 third probe.
- P4P Fourth probe presence (term. 5-6): n= not present; y= present.
- Fourth probe calibration: (-12.0 to 12.0°C; -21 to 21°F) allows to adjust possible offsets of the o4 fourth probe
- odS Outputs activation delay at start up: (0 to 255 min) this function is enabled at the initial start up of the instrument and inhibits any output activation for the period of time set in the parameter. (AUX and Light can work)
- AC Anti-short cycle delay: (0 to 30 min) interval between the compressor stop and the following restart.
- Con Compressor ON time with faulty probe: (0 to 255 min) time during which the compressor is active in case of faulty thermostat probe. With Con=0 compressor is always OFF
- COF Compressor OFF time with faulty probe: (0 to 255 min) time during which the compressor is off in case of faulty thermostat probe. With CoF=0 compressor is always active.

Temperature measurement unit: °C = Celsius; °F = Fahrenheit. When the measurement unit is

changed the SET point and the values of the regulation parameters have to be modified

Remote display: it select which probe is displayed by the Visograph (P1, P2, P3, P4)

dLy Display delay: (0.0 to 20min00sec; res. 10 sec) when the temperature changes, the display is

dtE Defrost termination temperature: (-55.0 to 150.0°C; -67 to 302°F) (Enabled only when the evaporator probe is present) sets the temperature measured by the evaporator probe which

Interval between defrosts: (1 to 120 h) determines the time interval between two defrost cycles

3/6

Resolution (for °C): (in = 1°C; de = 0,1°C) allows decimal point display. dE = 0.1°C; in = 1 °C.

updated of 1°C or 1°F after this time

causes the end of defrost.

Installing and operating instructions

MdF (Maximum) duration of defrost: (0 to 255 min) When P2P = n, no evaporator probe, it sets the defrost duration, when P2P = y, defrost end based on temperature, it sets the maximum length for defrost

dFd Display during defrost:

rt = real temperature; it = temperature reading at the defrost start;

Set = set point:

- dEF = "dEF" label;
- dAd Defrost display time out: (0 to 255 min) sets the maximum time between the end of defrost and the restarting of the real room temperature display.

FANS

FnC Fan operating mode:

- C-n = running with the compressor, OFF during the defrost;
- C-y = running with the compressor, ON during the defrost;
- O-n = continuous mode, OFF during the defrost;
- O-y = continuous mode, ON during the defrost;
- Fnd Fan delay after defrost: (0 to 255 min) this is time interval between the defrost end and evaporator fans start.
- FSt Fan stop temperature: (-55 to 150°C; -67 to 302°F) setting of temperature, detected by evaporator probe, above which the fan is always OFF
- Fon Fan ON time: (0 to 15 min) with FnC=C_n or C_y, (fan activated in parallel with compressor). it sets the evaporator fan ON cycling time when the compressor is off. With Fon=0 and FoF≠0 the fan are always off, with Fon=0 and FoF=0 the fan are always off.
- FoF Fan OFF time: (0 to 15 min) with FnC=C_n or C_y, (fan activated in parallel with compressor). It sets the evaporator fan off cycling time when the compressor is off. With Fon=0 and FoF≠0 the fan are always off, with Fon=0 and FoF=0 the fan are always off.

TEMPERATURE ALARMS FOR REGULATION PROBE TR3

A1C Temperature alarm configuration:

- rE = High and Low alarms related to Set Point
- Ab = High and low alarms related to the absolute temperature.
- A1U High temperature alarm for P1:
 - A1C = rE, 0 to 50°C or 0 to 90°F
 - A1C = Ab, A1L to 150°C or A1L to 302°F.

When this temperature is reached and after the A1d delay time the HA1 alarm is enabled

- A1L Low temperature alarm for P1: A1C = rE, 0 to 50°C or 0 to 90°F;
 - A1C = Ab, -55°C to A1U or -67°F to A1U.
 - When this temperature is reached and after the A1d delay time, the LA1 alarm is enabled.
- A1H Differential for temperature alarm recovery: (0.1 to 25.5°C; 1 to 45°F) differential for temperature alarm recovery.
- A1d Temperature alarm delay: (0 to 255 min) time interval between the detection of an alarm condition and the corresponding alarm signalling
- d1o Delay of temperature alarm at start-up: (0.0 to 23h50min, res. 10 min) time interval between the detection of the temperature alarm condition after the instrument power on and the alarm signalling.

TEMPERATURE ALARMS FOR LOGGING PROBE TL1

- A3U High temperature alarm for P3: (A3L to 150°C or A3L to 302°F) When this temperature is reached and after the ALd delay time the HA3 alarm is enabled.
- A3L Low temperature alarm for P3: (-55°C to A3U or -67°F to A3U) When this temperature is reached and after the A3d delay time, the LA3 alarm is enabled. A3H Differential for temperature alarm 3 recovery: (0.1 to 25.5°C; 1 to 45°F) differential for
- temperature alarm recovery. Temperature alarm 3 delay: (0 to 255 min) time interval between the detection of an alarm A3d
- condition and the corresponding alarm signalling.
- Delay of temperature alarm 3 at start-up: (0.0 to 23h50min, res. 10 min) time interval between d3o the detection of the temperature alarm condition after the instrument power on and the alarm signalling.

TEMPERATURE ALARMS FOR LOGGING PROBE TL2

- A4U High temperature alarm for P4: (A4L to 150°C or A4L to 302°F) When this temperature is reached and after the ALd delay time the HA3 alarm is enabled.
- A4L Low temperature alarm for P4: (-55°C to A4U or -67°F to A4U) When this temperature is reached and after the A3d delay time, the LA3 alarm is enabled.
- A4H Differential for temperature alarm 4 recovery: (0.1 to 25.5°C; 1 to 45°F) differential for temperature alarm recovery.
- Temperature alarm 4 delay: (0 to 255 min) time interval between the detection of an alarm A4d condition and the corresponding alarm signalling.
- d4o Delay of temperature alarm 4 at start-up: (0.0 to 23h50min, res. 10 min) time interval between the detection of the temperature alarm condition after the instrument power on and the alarm signalling

ALARM RELAY MANAGEMENT - ONLY WITH BATTERY-BACKUP CONNECTED

tbA Alarm relay disabling (n, Y)

- n = silencing disabled; alarm relay stays on till alarm condition lasts.
- Y = silencing enabled; alarm relay is switched OFF by pressing a key during an alarm. Aro Alarm relay activation with power failure: (n, Y)
 - n = the alarm relay is never activated during a power failure.
 - Y = the alarm relay is activated during a power failure.
- ALF Alarm relay activation for all the alarms: (n, Y)
- n = the alarm relay is activated only in case of a temperature alarm or regulation probe failure. Y = the alarm relay is activated for all the alarms.
- bon Time of buzzer restart after muting, in case of alarm duration: (0+30min) when 0 the buzzer is always off after muting
- AoP Alarm relay polarity: it set if the alarm relay is open or closed when an alarm happens. CL= terminals closed during an alarm; oP = terminals open during an alarm

DIGITAL INPUT

- i1P Digital input polarity: oP = the digital input is activated by opening the contact; CL = the digital input is activated by closing the contact.
- i1F Digital input configuration: EAL = external alarm: "EA" message is displayed; bAL = serious alarm "CA" message is displaye; dor = door switch function;

Digital input delay: (0 to 255 min) did

- With i1F= EAL or i1F = bAL digital input alarm delay: delay between the detection of the external alarm condition and its signalling With i1F= dor: door open signalling delay.
- Compressor and fan status when open door: no = normal; FAn = Fan OFF; CPr = Compressor odc OFF: F C = Compressor and fan OFF
- Outputs restart after doA alarm: no = outputs not affected by the doA alarm; YES = outputs rrd restart with the doA alarm.
- HES Temperature increase during the Energy Saving cycle : (-30,0°C+30,0°C/-22+86°F) it sets the increasing value of the set point during the Energy Saving cycle.

OTHER

- Adr RS485 serial address: (1 to 247) identifies the instrument address when connected to a ModBUS compatible monitoring system.
- PbC Type of probe: it allows to set the kind of probe used by the instrument. Pt1 = Pt1000 probe, ntC = NTC probe
- Software release for internal use. rEL
- Ptb Parameter table code: readable only
- Pr2 Pr2 menu: access is protected by password, if PSU is differente form zero

19 DIGITAL INPUT

The free voltage digital input is programmable in different configurations by the i1F parameter.

19.1 DOOR SWITCH INPUT (I1F = DOR)

It signals the door status and the corresponding relay output status through the **odC** parameter: **no** = normal (any change); **Fan** = Fan OFF; **CPr** = Compressor OFF; **F_C** = Compressor and fan OFF. Since the door is opened, after the delay time set through parameter did, the door alarm is enabled, the display shows the message "dA" and the regulation restarts is rtr = yES. The alarm stops as soon as the external digital input is disabled again. With the door open, the high and low temperature alarms are disabled

19.2 GENERIC ALARM (I1F = EAL)

As soon as the digital input is activated the unit will wait for did time delay before signalling the "EAL" alarm message. The outputs status doesn't change. The alarm stops just after the digital input is deactivated

19.3 SERIOUS ALARM MODE (I1F = BAL)

When the digital input is activated, the unit will wait for did delay before signalling the "CA" alarm message. The relay outputs are switched OFF. The alarm will stop as soon as the digital input is deactivated

19.4 DIGITAL INPUTS POLARITY

The digital input polarity depends on the i1P parameter:

i1P=CL: the input is activated by closing the contact. i1P=OP: the input is activated by opening the contact

20 INSTALLATION AND MOUNTING

The controller XW737K shall be mounted in a din rail

It must be connected to the keyboard by means of a two-wire cable (Ø 1mm). The temperature range allowed for correct operation is 0 to 60°C. Avoid places subject to strong vibrations, corrosive gases, excessive dirt or humidity. The same recommendations apply to probes. Let the air circulate by the cooling holes

20.1 XW737K - 8 DIN CASE - DIMENSIONS

20.2 D60K - PANEL CUT OUT

21 ELECTRICAL CONNECTIONS

XW737K is provided with disconnect-able screw terminal blocks for probes digital input and keyboard.

etructio Installing and operating in

EDCON

To connect, power supply and relays, XW737K is provided with Faston connections (6.3mm). Heatresistant cables have to be used.

Before connecting cables make sure the power supply complies with the instrument's requirements. Separate the probe and digital input cables from the power supply cables, from the outputs and the power connections. Do not exceed the maximum current allowed on each relay, in case of heavier loads use a suitable external relay

NOTE: the maximum current allowed for all the loads is 20A.

21.1 PROBE CONNECTIONS

The probes shall be mounted with the bulb upwards to prevent damages due to casual liquid infiltration. It is recommended to place the thermostat probe away from air streams to correctly measure the average room temperature. Place the defrost termination probe among the evaporator fins in the coldest place, where most ice is formed, far from heaters or from the warmest place during defrost, to prevent premature defrost termination.

22 TTL/RS485 SERIAL LINE

The TTL connector allows, by means of the external module TTL/RS485 (XJ485CX), to connect the unit to a network line ModBUS-RTU compatible as the Dixell monitoring system XJ500 (Version 3.0). The same TTL connector is used to upload and download the parameter list of the "HOT-KEY". The instruments can be ordered wit the serial output RS485 (Optional).

23 ALARM SIGNALS

Message	Cause	Outputs
"PF1"		Alarm output ON; Compressor output according to
	Regulating probe TR3 failure	parameters Con and CoF.
"PF2"	EVP Probe Failure	Alarm output ON; Other outputs unchanged
"PF3"	Logging probe TL1 failure	Alarm output ON; Other outputs unchanged
"PF4"	Logging probe TL2 failure	Alarm output ON; Other outputs unchanged
"HA1"	TR3 High Alarm	Alarm output ON; Other outputs unchanged
"LA1"	TR3 Low Alarm	Alarm output ON; Other outputs unchanged
"HA3"	High temperature alarm probe TL1	Alarm output ON; Other outputs unchanged
"LA3"	Low temperature alarm probe TL1	Alarm output ON; Other outputs unchanged
"HA4"	High temperature alarm probe TL2	Alarm output ON; Other outputs unchanged
"LA4"	Low temperature alarm probe TL2	Alarm output ON; Other outputs unchanged
"dA"	Door Open Alarm	Compressor and fans depend on "rrd"
"EA"	External Alarm	Output unchanged.
"CA"	Serious Alarm	All outputs OFF.

The alarm message is displayed until the alarm condition is recovery.

All the alarm messages are showed alternating with the room temperature except for the "PF1" which is flashing.

24 NOTIFICATION SIGNALS				
Message	Cause	Outputs		
"ECO"	Energy Saving mode Enabled	Shown alternatively to the temperature		

24.1 SILENCING BUZZER

Once the alarm signal is detected the buzzer can be silenced by pressing any key. Buzzer is mounted in the keyboard and it is an option.

24.2 "EE" ALARM

The dixell instruments are provided with an internal check for the data integrity. The "EE" alarm flashes when a failure in the memory data occurs. In such cases the alarm output is enabled.

24.3 ALARM RECOVERY

Probe alarms: "PF1" (probe1 faulty), "PF2", "PF3" and "PF4"; they automatically stop 10 sec after the probe restarts normal operation. Check connections before replacing the probe. Temperature alarms "HA1", "LA1", "HA3", "LA3", "HA4" and "LA4" automatically stop as soon as the

temperature returns to normal values

Alarms "EA" and "CA" (with i1F=bAL) recover as soon as the digital input is disabled.

25 CONNECTIONS 25.1 XW737K - 7020333 NC NO Alarm မှု နှို Light င Fan Comp Supply 230V~ /s ∕∖∖ 18 17 16 10 9 8 5 4 2 1 0 A(3)A Ś 8(3)A 21 22 23 24 25 26 28 29 31 32 36 37 + -BATTERY BCKP 6Vdc Hot Key 0 Ľ, + Ŗ TTL. 7/020333 TL1 EVP KEYBOARD TL2 TR3 DI1

25.2 XW737K - 7	020350
-----------------	--------

		Ught C Fan 10 9 8 8(3)A	Supply Comp 120V~
Hot Key TTL 70206350	212223242526 N N N N TL2 TL1 EVP TR3	28 29 31 32 4 + - DI1 KEYBOARD	36 37 + - BATTERY BCKP 6V/c

iser ac						
6 DEF	AULT VALUES					
Label	Description	Range	Value	Level		
20001	TIME SETTING	· · · · · · g ·				
Hur	Current hour	0 ÷ 23	-	Pr1		
Min	Current minute	0 ÷ 59	-	Pr1		
dAy	Day of the month	1÷31	-	Pr1		
MON	Month	1÷12 (0÷00)	-	Pr1		
уса	rear	(0+99)	-	FII		
	LOG SETTING					
itP	Recording interval	1 ÷ 255 min	5	Pr1		
rC1	First probe recording enable	0 ÷ 1	YES	Pr2		
rC2	Second probe recording	0 ÷ 1	NO	Pr2		
rC3	Third probe recording enable	0 ÷ 1	NO	Pr2		
rC4	Fourth probe recording enable	0 ÷ 1	YES	Pr1		
rCb	Start recording REC key enabling	0 ÷ 1	NO	Pr1		
EU	Date format	0 ÷ 1	EU	Pr2		
rSd	Data erase	0 ÷ 1	NO	Pr2		
rsa	Alarms erase	0 ÷ 1	NU	Prz		
Sot	Set point	_95 ÷ _55	_87	Dr1		
Hv	Differential	1 ÷ 26 °C	-07	Pr2		
15	Minimum set point limit	-100 ÷ -86 °C	-95	Pr2		
	Maximum set point limit	-86 ÷ 150 °C	-55	Pr2		
	Regulation probe calibration (term					
ot	1-2)	-12 ÷ 12 °C	-10	Pr2		
	Evaporator probe presence (term.			1		
P2P	2-3)	0 ÷ 1	NO	Pr2		
οE	Evaporator probe calibration	-12 ÷ 12 °C	0	Pr2		
P3P	Third probe presence (term. 4-5)	0 ÷ 1	NO	Pr2		
o3	Third probe calibration	-12 ÷ 12 °C	0	Pr2		
P4P	Fourth probe presence (term. 5-6)	0 ÷ 1	NO	Pr2		
04	Fourth probe calibration	-12 ÷ 12 °C	0	Pr2		
odS	Outputs activation delay at start up	0 ÷ 255 min	0	Pr2		
AC	Anti-short cycle delay	0 ÷ 30 min	5	Pr2		
C	Compressor ON time with faulty	0 · 055 min	60	D-2		
Con	probe	0 ÷ 255 min	60	Prz		
COF	Compressor OFF time with faulty	0 ÷ 255 min	F	Dr2		
COF		0 ÷ 255 mm	5	FIZ		
CE	Temperature measurement unit	0 ÷ 1	°C	Pr1		
rES	Resolution (for °C)	0 ÷ 1	in	Pr1		
rEd	Remote display	0 ÷ 5	P1	Pr2		
dLy	Display delay	0 ÷ 120 min	00:00	Pr2		
	DEFROST					
dtE	Defrost termination temperature	-100 ÷ 150 °C	4	Pr2		
ldF	Interval between defrosts	1 ÷ 120 hour	1	Pr2		
MdF	(Maximum) duration of defrost	0 ÷ 255 min	0	Pr2		
dFd	Display during defrost	0 ÷ 3	rt	Pr2		
dAd	Defrost display time out	0 ÷ 255 min	2	Pr2		
_	FAN		_			
Fnc	Fan operating mode	0 ÷ 3	0-y	Pr2		
Fnd	Fan delay after defrost	0 ÷ 255 min	0	Pr2		
FSt	Fan stop temperature	-100 ÷ 150 °C	0	Pr2		
Fon	Fan ON time	0 ÷ 15 min	0	Pr2		
FOF		0 ÷ 15 min	0	PfZ		
A1C	ALARMS	0 ÷ 1	٨b	Dr?		
A1U	High temperature alarm for P1	-100 ÷ 150 °C	-60	Pr2		
A1L	Low temperature alarm for P1	-100 ÷ -75 °C	-100	Pr2		
	Differential for temperature alarm					
A1H	recovery	1 ÷ 26 °C	1	Pr2		
A1d	Temperature alarm delay	0 ÷ 255 min	0	Pr2		
	Delay of temperature alarm at					
d1o	start-up	0 ÷ 143 min	00:00	Pr2		
A3U	High temperature alarm for P3	-100 ÷ 150 °C	-75	Pr2		
A3L	Low temperature alarm for P3	-100 ÷ -75 °C	-100	Pr2		
A 21 1	Differential for temperature alarm 3	1 . 00	4	D 0		
734 M2H	Tomporature clorm 2 delet	1 ÷ 20	0	PrZ		
нэа	Delay of tomporature clarm 3 delay	v - ∠55 min	U	Prz		
d3o	start-up	0 ÷ 143 hour	00.00	Pr?		
A4U	High temperature alarm for P4	-100 ÷ 150 °C	-75	Pr2		
A4L	Low temperature alarm for P4	-100 ÷ -75 °V	-100	Pr2		
	Differential for temperature alarm 4	100 10 1	100			
A4H	recovery	1 ÷ 26 °C	1	Pr2		
A4d	Temperature alarm 4 delay	0 ÷ 255 min	0	Pr2		
	Delay of temperature alarm 4 at			1		
d4o	start-up	0 ÷ 143 hour	00:30	Pr2		
tbA	Alarm relay disabling	0 ÷ 1	YES	Pr2		
	Alarm relay activation with power					
Aro	failure	0 ÷ 1	YES	Pr2		
–	Alarm relay activation for all the					
ALF	alarms	0 ÷ 1	YES	Pr2		
har	Lime buzzer restart after	0.000	20	D 4		
nou	muung,case alarm durat	u - 30 min	30	Pľ		

AoP

i1P

Alarm relay polarity

Digital input polarity

Pr2

Pr2

0 ÷ 1

0 ÷ 1

DIGITAL INPUT

CL

٥P

Installing and operating instructions

Label	Description	Range	Value	Level		
i1F	1F Digital input configuration		dor	Pr2		
	with i1F= EAL or i1F = bAL d.i					
did	alarm delay (13-14)	0 ÷ 255 min	1	Pr2		
	Compressor and fan status when					
odc	open door	0 ÷ 3	no	Pr2		
rrd	Outputs restart after doA alarm	0 ÷ 1	NO	Pr2		
ENERGY SAVING						
	Temperat increase during the					
HES	Energy Saving cycle	-30 ÷ 30 °C	0	Pr2		
OTHER						
PAS	Valore PSW	0÷999	12	Pr2		
Adr	Serial address	1 ÷ 247	1	Pr1		
PbC	Type of probe	Ntc, Pt1	Pt1	Pr2		
rEL	Release software		1.2	Pr2		
Ptb	Parameter table	-		Pr2		

DIXELL

Dixell S.r.l. - Z.I. Via dell'Industria, 27 - 32016 Alpago (BL) ITALY Tel. +39.0437.9833 r.a. - Fax +39.0437.989313 - EmersonClimate.com/Dixell - dixell@emerson.com